Objective/background: Mycobacterium cosmeticum, first described in 2004, was recovered from a patient undergoing a cosmetic procedure. Subsequently, this species was associated with an outbreak in a nail salon. In all cases, the isolates were susceptible to all antibiotics tested. Recently, however, we recovered a strain of M. cosmeticum from the Chesapeake Bay, resistant to 11 of 14 antimicrobials. The objective of this work was to present our findings on the resistance and susceptibility of this isolate to various antibiotics.
Materials and methods: Surface water samples were collected from 10 sites in the Chesapeake Bay and upper tributaries to assess microbial diversity and antibiotic resistance. Site selection was based on proximity to agricultural runoff, industrial contaminants, and sewage effluents. Samples were processed and recovered organisms were identified and subjected to antimicrobial-susceptibility testing.
Results: One nontuberculous species, identified as M. cosmeticum, was recovered from Sandy Point State Park. Resistance was detected to several antibiotics: doxycycline (16 μg/mL), tigecycline (≥4 μg/mL), clarithromycin (8 μg/mL), trimethoprim/sulfamethoxazole (≥8/152 μg/mL), imipenem (32 μg/mL), cefoxitin (32 μg/mL), ethionamide (≥20 μg/mL), and streptomycin (16 μg/mL). Of the 14 antibiotics tested, only the fluoroquinolones, linezolid, and amikacin demonstrated potent activity with susceptible minimum inhibitory concentrations.
Conclusion: The antimicrobial resistance identified in this M. cosmeticum isolates from the Chesapeake Bay raises some important concerns: (a) why is the susceptibility pattern in this isolate so different from the previously published reports, (b) how did resistance emerge in this isolate,
(c) is there a source of environmental exposure to antibiotics, (d) is it a human isolate transferred to the watershed, or (e) is it the result of lateral gene transfer with other resistant organisms in the Bay?