During mammalian development the fetal liver plays an important role in hematopoiesis. Studies with the macrophage (M phi)-specific mAb F4/80 have revealed an extensive network of M phi plasma membranes interspersed between developing erythroid cells in fetal liver. To investigate the interactions between erythroid cells and stromal M phi, we isolated hematopoietic cell clusters from embryonic day-14 murine fetal liver by collagenase digestion and adherence. Clusters of erythroid cells adhered to glass mainly via M phi, 94% of which bound 19 +/- 11 erythroblasts (Eb) per cell. Bound Eb proliferated vigorously on the surface of fetal liver M phi, with little evidence of ingestion. The M phi could be stripped of their associated Eb and the clusters then reconstituted by incubation with Eb in the presence of divalent cations. The interaction required less Ca++ than Mg++, 100 vs. 250 microM for half-maximal binding, and was mediated by a trypsin-sensitive hemagglutinin on the M phi surface. After trypsin treatment fetal liver M phi recovered the ability to bind Eb and this process could be selectively inhibited by cycloheximide. Inhibition tests showed that the Eb receptor differs from known M phi plasma membrane receptors and fetal liver M phi did not bind sheep erythrocytes, a ligand for a distinct M phi hemagglutinin. We propose that fetal liver M phi interact with developing erythroid cells by a novel nonphagocytic surface hemagglutinin which is specific for a ligand found on Eb and not on mature red cells.