An experiment was carried out in two heathland ecosystems, one dominated by Calluna vulgaris and the other by Molinia caerulea, to analyse the effects of soil organic matter accumulation and nutrient mineralization on plant species dynamics during succession. The experiment included one treatment that received nutrient solution and two treatments where the rate of soil organic matter accumulation was reduced by removing litter or accelerated by adding litter. In a fourth treatment the C. vulgaris litter produced in the C. vulgaris-dominated plots was replaced by litter of M. caerulea and vice versa. Treatments were applied over 8 years. Addition of nutrient solution caused C. vulgaris to decline, and grass species to increase sharply, compared to the control plots. Addition of litter enhanced both N mineralization and the biomass of M. caerulea and Deschampsia flexuosa but reduced the biomass of C. vulgaris. The effects of replacing C. vulgaris litter by M. caerulea litter, or vice versa, on N mineralization and species dynamics could not be attributed to differences between the decomposability of the different litter materials that were transferred. The results confirm the hypothesis that increased litter inputs accelerate the rate of species replacement during succession.