Dorsal (D), lateral (L and R), and ventral (V) portions of the endoderm of blastulae ofAmbystoma mexicanum of different age (stages 8+ to 10-) were combined with ectodermal caps of stage 8+ blastulae. All V and most L and R portions induced only ventrocaudal mesodermal structures - "ventral" type of mesoderm induction. Almost all D portions induced much more voluminous structures of predominantly axial character - "dorsal" type of mesoderm induction. The difference in mesoderm-inducing capacity of the dorsal as against the lateral and ventral endoderm is probably purely quantitative in character. The dorsal endoderm exhibits a pronounced dominance in mesoderm-inducing capacity. During the early symmetrization of the amphibian egg it is apparently especially the presumptive dorsal endoderm that becomes endowed with strong mesoderm-inducing properties.A comparison of the results obtained with endodermal portions of blastulae of different age showed that the mesoderm-inducing capacity first begins to decline in the dorsal endoderm (around stage 9), subsequently in the lateral, and finally in the ventral endoderm (at stage 10-). At stage 10- the dorsal endoderm no longer has mesoderm-inducing capacities.In the recombinates there is a striking correspondence between the regional differentiation of the mesoderm and that of the endoderm. The latter differs markedly from the presumptive significance of the various endodermal regions in the normal embryo.Primordial germ cells, which constitute a characteristic component of the "ventral" type of mesoderm induction, can be induced not only by ventral, but also by lateral and to some extent even by dorsal endoderm. The development of primordial germ cells from the ectodermal component of the various recombinates indicates that in the urodeles the origin of the primordial germ cells differs markedly from that in the anurans.