A Bach2-Cebp Gene Regulatory Network for the Commitment of Multipotent Hematopoietic Progenitors

Cell Rep. 2017 Mar 7;18(10):2401-2414. doi: 10.1016/j.celrep.2017.02.029.

Abstract

Hematopoietic stem cell and multipotent progenitor (MPP) commitment can be tuned in response to an infection so that their differentiation is biased toward myeloid cells. Here, we find that Bach2, which inhibits myeloid differentiation in common lymphoid progenitors, represses a cohort of myeloid genes and activates those linked to lymphoid function. Bach2 repressed both Cebpb and its target Csf1r, encoding C/EBPβ and macrophage colony-stimulating factor receptor (M-CSFr), respectively, whereas C/EBPβ repressed Bach2 and activated Csf1r. Bach2 and C/EBPβ further bound to overlapping regulatory regions at their myeloid target genes, suggesting the presence of a gene regulatory network (GRN) with mutual repression between these factors and a feedforward loop leading to myeloid gene regulation. Lipopolysaccharide reduced the expression of Bach2, resulting in enhanced myeloid differentiation. The Bach2-C/EBPβ GRN pathway thus tunes MPP commitment to myeloid and lymphoid lineages both under normal conditions and after infection.

Keywords: B cells; gene regulatory network; infection; inner myeloid; lineage commitment; multipotent progenitors; stem cells; super enhancers; transcription factors.

Publication types

  • Research Support, Non-U.S. Gov't

MeSH terms

  • Animals
  • Basic-Leucine Zipper Transcription Factors / metabolism*
  • Binding Sites
  • CCAAT-Enhancer-Binding Proteins / metabolism*
  • Cell Differentiation / genetics
  • Down-Regulation / genetics
  • Enhancer Elements, Genetic / genetics
  • Gene Regulatory Networks*
  • Hematopoietic Stem Cells / cytology
  • Hematopoietic Stem Cells / metabolism*
  • Lymphoid Progenitor Cells / cytology
  • Lymphoid Progenitor Cells / metabolism
  • Mice, Inbred C57BL
  • Multipotent Stem Cells / cytology
  • Multipotent Stem Cells / metabolism*
  • Myeloid Progenitor Cells / cytology
  • Myeloid Progenitor Cells / metabolism
  • Protein Binding

Substances

  • Bach2 protein, mouse
  • Basic-Leucine Zipper Transcription Factors
  • CCAAT-Enhancer-Binding Proteins