Alzheimer's disease (AD) is characterized by an extensive accumulation of amyloid-β (Aβ) peptide, which triggers a set of deleterious processes, including synaptic dysfunction, inflammation, and neuronal injury, leading to neuronal loss and cognitive impairment. A large body of evidence supports that nuclear receptor (NR) activation could be a promising therapeutic approach for AD. NRs are ligand-activated transcription factors that regulate gene expression and have cell type-specific effects. In this review, we discuss the mechanisms that underlie the beneficial effects of NRs in AD. Moreover, we summarize studies reported in the last 10-15 years and their major outcomes arising from the pharmacological targeting of NRs in AD animal models. The dissection of the pathways regulated by NRs in the context of AD is of importance in identifying novel and effective therapeutic strategies.
Keywords: inflammation; neurodegeneration; neuroprotection; nuclear receptors/liver X receptor; nuclear receptors/peroxisome proliferator-activated receptor; nuclear receptors/retinoic acid receptor; nuclear receptors/retinoid X receptor.
Copyright © 2017 by the American Society for Biochemistry and Molecular Biology, Inc.