Interactive reconstructions of cranial 3D implants under MeVisLab as an alternative to commercial planning software

PLoS One. 2017 Mar 6;12(3):e0172694. doi: 10.1371/journal.pone.0172694. eCollection 2017.

Abstract

In this publication, the interactive planning and reconstruction of cranial 3D Implants under the medical prototyping platform MeVisLab as alternative to commercial planning software is introduced. In doing so, a MeVisLab prototype consisting of a customized data-flow network and an own C++ module was set up. As a result, the Computer-Aided Design (CAD) software prototype guides a user through the whole workflow to generate an implant. Therefore, the workflow begins with loading and mirroring the patients head for an initial curvature of the implant. Then, the user can perform an additional Laplacian smoothing, followed by a Delaunay triangulation. The result is an aesthetic looking and well-fitting 3D implant, which can be stored in a CAD file format, e.g. STereoLithography (STL), for 3D printing. The 3D printed implant can finally be used for an in-depth pre-surgical evaluation or even as a real implant for the patient. In a nutshell, our research and development shows that a customized MeVisLab software prototype can be used as an alternative to complex commercial planning software, which may also not be available in every clinic. Finally, not to conform ourselves directly to available commercial software and look for other options that might improve the workflow.

MeSH terms

  • Humans
  • Image Processing, Computer-Assisted
  • Imaging, Three-Dimensional*
  • Models, Anatomic
  • Printing, Three-Dimensional*
  • Prostheses and Implants*
  • Skull
  • Software*
  • Surgery, Computer-Assisted
  • Workflow

Grants and funding

The work received funding from BioTechMed-Graz in Austria (Hardware accelerated intelligent medical imaging) and the 6th Call of the Initial Funding Program from the Research & Technology House (F&T-Haus) at the Graz University of Technology (PI: Jan Egger). Dr. Xiaojun Chen receives support by the Natural Science Foundation of China (Grant No.: 81511130089) and the Foundation of Science and Technology Commission of Shanghai Municipality (Grants No.: 14441901002, 15510722200 and 16441908400).