Background: Understanding how cells interact with nanomaterials is important for rational design of nanomaterials for nanomedicine and transforming them for clinical applications. Particularly, the mechanism for one-dimensional (1D) nanomaterials with high aspect ratios still remains unclear.
Results: In this work, we present amine-functionalized silicon nanowires (SiNW-NH2) entering CHO-β cells via a physical membrane wrapping mechanism. By utilizing optical microscopy, transmission electron microscopy, and confocal fluorescence microscopy, we successfully visualized the key steps of internalization of SiNW-NH2 into cells.
Conclusion: Our results provide insight into the interaction between 1D nanomaterials and confirm that these materials can be used for understanding membrane mechanics through physical stress exerted on the membrane.
Keywords: Cellular interaction; Membrane wrapping; Silicon nanowires.