Association Between Osteogenesis and Inflammation During the Progression of Calcified Plaque Evaluated by 18F-Fluoride and 18F-FDG

J Nucl Med. 2017 Jun;58(6):968-974. doi: 10.2967/jnumed.116.182790. Epub 2017 Feb 23.

Abstract

18F-FDG is the most widely validated PET tracer for the evaluation of atherosclerotic inflammation. Recently, 18F-NaF has also been considered a potential novel biomarker of osteogenesis in atherosclerosis. We aimed to analyze the association between inflammation and osteogenesis at different stages of atherosclerosis, as well as the interrelationship between these 2 processes during disease progression. Methods: Thirty-four myeloma patients underwent 18F-NaF and 18F-FDG PET/CT examinations. Lesions were divided into 3 groups (noncalcified, mildly calcified, and severely calcified lesions) on the basis of calcium density as measured in Hounsfield units by CT. Tissue-to-background ratios were determined from PET for both tracers. The association between inflammation and osteogenesis during atherosclerosis progression was evaluated in 19 patients who had at least 2 examinations with both tracers. Results: There were significant correlations between the maximum tissue-to-background ratios of the 2 tracers (Spearman r = 0.5 [P < 0.01]; Pearson r = 0.4 [P < 0.01]) in the 221 lesions at baseline. The highest uptake of both tracers was observed in noncalcified lesions, but without any correlation between the tracers (Pearson r = 0.06; P = 0.76). Compared with noncalcified plaques, mildly calcified plaques showed concordant significantly lower accumulation, with good correlation between the tracers (Pearson r = 0.7; P < 0.01). In addition, enhanced osteogenesis-derived 18F-NaF uptake and regressive inflammation-derived 18F-FDG uptake were observed in severely calcified lesions (Pearson r = 0.4; P < 0.01). During follow-up, increased calcium density and increased mean 18F-NaF uptake were observed, whereas mean 18F-FDG uptake decreased. Most noncalcified (86%) and mildly calcified (81%) lesions and 47% of severely calcified lesions had concordant development of both vascular inflammation and osteogenesis. Conclusion: The combination of 18F-NaF PET imaging and 18F-FDG PET imaging promotes an understanding of the mechanism of plaque progression, thereby providing new insights into plaque stabilization.

Keywords: 18F-FDG; 18F-NaF; PET/CT; atherosclerosis; calcification; inflammation.

Publication types

  • Comparative Study
  • Evaluation Study

MeSH terms

  • Aged
  • Atherosclerosis / diagnostic imaging*
  • Disease Progression
  • Fluorodeoxyglucose F18*
  • Humans
  • Osteogenesis*
  • Positron-Emission Tomography / methods*
  • Radiopharmaceuticals
  • Reproducibility of Results
  • Sensitivity and Specificity
  • Sodium Fluoride*
  • Vascular Calcification / diagnostic imaging*

Substances

  • Radiopharmaceuticals
  • Fluorodeoxyglucose F18
  • Sodium Fluoride