Bacterial blight, caused by Xanthomonas oryzae pv. oryzae (Xoo), is one of the most devastating diseases resulting in a huge loss of the total rice productivity. The initial interaction between rice and Xoo takes place in the host apoplast and is mediated primarily by secretion of various proteins from both partners. Yet, such secretory proteins remain to be largely identified and characterized. This study employed a label-free quantitative proteomics approach and identified 404 and 323 Xoo-secreted proteins from in vitro suspension-cultured cells and in planta systems, respectively. Gene Ontology analysis showed their involvement primarily in catalytic, transporter, and ATPase activities. Of a particular interest was a Xoo cysteine protease (XoCP), which showed dramatic increase in its protein abundance in planta upon Xoo interaction with a susceptible rice cultivar. Knock-out mutants of XoCP showed reduced pathogenicity on rice, highlighting its potential involvement in Xoo virulence. Besides, a parallel analysis of in planta rice-secreted proteins resulted in identification of 186 secretory proteins mainly associated with the catalytic, antioxidant, and electron carrier activities. Identified secretory proteins were exploited to shed light on their possible role in the rice-Xoo interaction, and that further deepen our understanding of such interaction.
Biological significance: Xanthomonas oryzae pv. oryzae (Xoo), causative agent of bacterial blight disease, results in a huge loss of the total rice productivity. Using a label-free quantitative proteomics approach, we identified 727 Xoo- and 186 rice-secreted proteins. Functional annotation showed Xoo secreted proteins were mainly associated with the catalytic, transporter, and ATPase activities while the rice secreted proteins were mainly associated with the catalytic, antioxidant, and electron carrier activities. A novel Xoo cysteine protease (XoCP) was identified, showing dramatic increase in its protein abundance in planta upon Xoo interaction with a susceptible rice cultivar. Knock-out mutants of XoCP showed reduced pathogenicity on rice, highlighting its potential involvement in Xoo virulence.
Keywords: Bacterial blight; Pathogenicity; Proteomics; Rice; Secretome.
Copyright © 2017 Elsevier B.V. All rights reserved.