Boosting Hole Mobility in Coherently Strained [110]-Oriented Ge-Si Core-Shell Nanowires

Nano Lett. 2017 Apr 12;17(4):2259-2264. doi: 10.1021/acs.nanolett.6b04891. Epub 2017 Feb 28.

Abstract

The ability of core-shell nanowires to overcome existing limitations of heterostructures is one of the key ingredients for the design of next generation devices. This requires a detailed understanding of the mechanism for strain relaxation in these systems in order to eliminate strain-induced defect formation and thus to boost important electronic properties such as carrier mobility. Here we demonstrate how the hole mobility of [110]-oriented Ge-Si core-shell nanowires can be substantially enhanced thanks to the realization of large band offset and coherent strain in the system, reaching values as high as 4200 cm2/(Vs) at 4 K and 1600 cm2/(Vs) at room temperature for high hole densities of 1019 cm-3. We present a direct correlation of (i) mobility, (ii) crystal direction, (iii) diameter, and (iv) coherent strain, all of which are extracted in our work for individual nanowires. Our results imply [110]-oriented Ge-Si core-shell nanowires as a promising candidate for future electronic and quantum transport devices.

Keywords: Nanowire; defect-free; epitaxy; germanium; mobility; silicon.

Publication types

  • Research Support, Non-U.S. Gov't