Background: Activation of macrophage is involved in many inflammation diseases. Lipopolysaccharide (LPS) is a powerful inflammatory signal contributing to monocytes/macrophages activation associated with increased proinflammatory cytokines expressions. We recently identified that vaccarin was expected to protect endothelial cells from injury. Hypaphorine was abundantly found in vaccaria semen. However, the potential roles and underlying mechanisms of vaccaria hypaphorine on macrophage inflammation have been poorly defined.
Methods: This study was designed to determine the effects of vaccaria hypaphorine on LPS-mediated inflammation in RAW 264.7 cells.
Results: In this study, we demonstrated that vaccaria hypaphorine dramatically ameliorated LPS-induced nitric oxide (NO) release and productions of proinflammatory cytokines including tumor necrosis factor-α (TNF-α), interleukin-1β (IL-1β), IL-6, IL-10, monocyte chemoattractant protein 1 (MCP-1) and prostaglandin E2 (PGE2) in RAW 264.7 cells. LPS-stimulated expressions of cyclooxygenase-2 (COX-2) and inducible nitric oxide synthase (iNOS) were down-regulated by vaccaria hypaphorine. Furthermore, vaccaria hypaphorine retarded LPS-induced phosphorylation of ERK, nuclear factor kappa beta (NFκB), NFκB inhibitor IκBα, and IKKβ. Immunofluorescence staining revealed that vaccaria hypaphorine eliminated the nuclear translocation of NFκB in LPS-treated RAW 264.7 cells.
Conclusion: It was seen that vaccaria hypaphorine counteracted inflammation via inhibition of ERK or/and NFκB signaling pathways. Collectively, we concluded that vaccaria hypaphorine can be served as an anti-inflammatory candidate.
Keywords: COX-2; ERK; Hypaphorine; Inflammation; NFκB; iNOS.