The Position of the N Atom Plays a Significant Role for Excited-State Decay of Heterocycles

J Phys Chem Lett. 2017 Mar 2;8(5):1019-1024. doi: 10.1021/acs.jpclett.6b02897. Epub 2017 Feb 16.

Abstract

We have employed combined electronic structure calculations and nonadiabatic dynamics simulations to study the S1 radiationless deactivation mechanism of pyrazole. In terms of MS-CASPT2 computed results, we propose that the 1πσ* state-driven nonadiabatic N-N dissociation is a major relaxation path; the ring-puckering deformation path as well as the 1πσ* state-driven N-H dissociation are less favorable. This excited-state decay mechanism is supported by MS-CASPT2 nonadiabatic dynamics simulations. The present study demonstrates that pyrazole has a different excited-state radiationless deactivation mechanism compared with its structural isomer imidazole, in which the 1πσ* state-driven nonadiabatic N-H dissociation plays a more important role. However, such a channel is suppressed in pyrazole; instead, the 1πσ* state-driven nonadiabatic N-N dissociation is dominant.