CDKN2A/p16INK4a expression is associated with vascular progeria in chronic kidney disease

Aging (Albany NY). 2017 Feb 9;9(2):494-507. doi: 10.18632/aging.101173.

Abstract

Patients with chronic kidney disease (CKD) display a progeric vascular phenotype linked to apoptosis, cellular senescence and osteogenic transformation. This has proven intractable to modelling appropriately in model organisms. We have therefore investigated this directly in man, using for the first time validated cellular biomarkers of ageing (CDKN2A/p16INK4a, SA-β-Gal) in arterial biopsies from 61 CKD patients undergoing living donor renal transplantation. We demonstrate that in the uremic milieu, increased arterial expression of CDKN2A/p16INK4a associated with vascular progeria in CKD, independently of chronological age. The arterial expression of CDKN2A/p16INK4a was significantly higher in patients with coronary calcification (p=0.01) and associated cardiovascular disease (CVD) (p=0.004). The correlation between CDKN2A/p16INK4a and media calcification was statistically significant (p=0.0003) after correction for chronological age. We further employed correlate expression of matrix Gla protein (MGP) and runt-related transcription factor 2 (RUNX2) as additional pathognomonic markers. Higher expression of CDKN2A/p16INK4a, RUNX2 and MGP were observed in arteries with severe media calcification. The number of p16INK4a and SA-β-Gal positive cells was higher in biopsies with severe media calcification. A strong inverse correlation was observed between CDKN2A/p16INK4a expression and carboxylated osteocalcin levels. Thus, impaired vitamin K mediated carboxylation may contribute to premature vascular senescence.

Keywords: chronic kidney disease; p16; vascular calcification; vascular senescence; vitamin.

MeSH terms

  • Adult
  • Calcium-Binding Proteins / genetics
  • Calcium-Binding Proteins / metabolism
  • Cellular Senescence / physiology*
  • Core Binding Factor Alpha 1 Subunit / genetics
  • Core Binding Factor Alpha 1 Subunit / metabolism
  • Cyclin-Dependent Kinase Inhibitor p16
  • Cyclin-Dependent Kinase Inhibitor p18 / genetics*
  • Cyclin-Dependent Kinase Inhibitor p18 / metabolism
  • Extracellular Matrix Proteins / genetics
  • Extracellular Matrix Proteins / metabolism
  • Female
  • Humans
  • Male
  • Matrix Gla Protein
  • Middle Aged
  • Progeria / complications
  • Progeria / genetics*
  • Progeria / metabolism
  • Renal Insufficiency, Chronic / complications
  • Renal Insufficiency, Chronic / genetics*
  • Renal Insufficiency, Chronic / metabolism
  • Vascular Diseases / complications
  • Vascular Diseases / genetics*
  • Vascular Diseases / metabolism
  • Young Adult

Substances

  • CDKN2A protein, human
  • Calcium-Binding Proteins
  • Core Binding Factor Alpha 1 Subunit
  • Cyclin-Dependent Kinase Inhibitor p16
  • Cyclin-Dependent Kinase Inhibitor p18
  • Extracellular Matrix Proteins
  • RUNX2 protein, human