Hydra: A web-based system for cardiovascular analysis, diagnosis and treatment

Comput Methods Programs Biomed. 2017 Feb:139:61-81. doi: 10.1016/j.cmpb.2016.10.019. Epub 2016 Oct 29.

Abstract

Background and objective: Cardiovascular (CV) risk stratification is a highly complex process involving an extensive set of clinical trials to support the clinical decision-making process. There are many clinical conditions (e.g. diabetes, obesity, stress, etc.) that can lead to the early diagnosis or establishment of cardiovascular disease. In order to determine all these clinical conditions, a complete set of clinical patient analyses is typically performed, including a physical examination, blood analysis, electrocardiogram, blood pressure (BP) analysis, etc. This article presents a web-based system, called Hydra, which integrates a full and detailed set of services and functionalities for clinical decision support in order to help and improve the work of clinicians in cardiovascular patient diagnosis, risk assessment, treatment and monitoring over time.

Methods: Hydra integrates a number of different services: a service for inputting all the information gathered by specialists (physical examination, habits, BP, blood analysis, electrocardiogram, etc.); a tool to automatically determine the CV risk stratification, including well-known standard risk stratification tables; and, finally, various tools to incorporate, analyze and graphically present the records of the ambulatory BP monitoring that provides BP analysis over a given period of time (24 or 48 hours). In addition, the platform presents a set of reports derived from all the information gathered from the patient in order to support physicians in their clinical decisions.

Results: Hydra was tested and validated in a real domain. In particular, internal medicine specialists at the Hypertension Unit of the Santiago de Compostela University Hospital (CHUS) validated the platform and used it in different clinical studies to demonstrate its utility. It was observed that the platform increased productivity and accuracy in the assessment of patient data yielding a cost reduction in clinical practice.

Conclusions: This paper proposes a complete platform that includes different services for cardiovascular clinical decision support. It was also run as a web-based application to facilitate its use by clinicians, who can access the platform from any remote computer with Internet access. Hydra also includes different automated methods to facilitate the physicians' work and avoid potential errors in the analysis of patient data.

Keywords: Ambulatory blood pressure monitoring; Cardiovascular; Computer-based medical applications; Internal medicine; Risk stratification tables; Web-based systems.

MeSH terms

  • Cardiovascular Diseases / diagnosis*
  • Cardiovascular Diseases / therapy*
  • Humans
  • Internet*