Purpose of review: Cardiac positron emission tomography (PET) images often contain errors due to cardiac, respiratory, and patient motion during relatively long image acquisition. Advanced motion compensation techniques may improve PET spatial resolution, eliminate potential artifacts, and ultimately improve the research and clinical capabilities of PET.
Recent findings: Combined cardiac and respiratory gating has only recently been implemented in clinical PET systems. Considering that the gated image bins contain much lower counts than the original PET data, they need to be summed after correcting for motion, forming motion-corrected, high-count image volume. Furthermore, automated image registration techniques can be used to correct for motion between CT attenuation scan and PET acquisition. While motion correction methods are not yet widely used in clinical practice, approaches including dual-gated non-rigid motion correction and the incorporation of motion correction information into the reconstruction process have the potential to markedly improve cardiac PET imaging.
Keywords: Cardiac PET imaging; Coronary imaging; Gated PET; PET motion correction.