Safety and Efficacy of a Lentiviral Vector Containing Three Anti-HIV Genes-CCR5 Ribozyme, Tat-rev siRNA, and TAR Decoy-in SCID-hu Mouse-Derived T Cells

Mol Ther. 2007 Jun;15(6):1182-1188. doi: 10.1038/sj.mt.6300157. Epub 2016 Dec 7.

Abstract

Gene therapeutic strategies show promise in controlling human immunodeficiency virus (HIV) infection and in restoring immunological function. A number of efficacious anti-HIV gene constructs have been described so far, including small interfering RNAs (siRNAs), RNA decoys, transdominant proteins, and ribozymes, each with a different mode of action. However, as HIV is prone to generating escape mutants, the use of a single anti-HIV construct would not be adequate to afford long range-viral protection. On this basis, a combination of highly potent anti-HIV genes-namely, a short hairpin siRNA (shRNA) targeting rev and tat, a transactivation response (TAR) decoy, and a CCR5 ribozyme-have been inserted into a third-generation lentiviral vector. Our recent in vitro studies with this construct, Triple-R, established its efficacy in both T-cell lines and CD34 cell-derived macrophages. In this study, we have evaluated this combinatorial vector in vivo. Vector-transduced CD34 cells were injected into severe combined immunodeficiency (SCID)-hu mouse thy/liv grafts to determine their capacity to give rise to T cells. Our results show that phenotypically normal transgenic T cells are generated that are able to resist HIV-1 infection when challenged in vitro. These important attributes of this combinatorial vector show its promise as an excellent candidate for use in human clinical trials.