Small Heat Shock Proteins (sHSPs)/HSP20 are molecular chaperones that protect plants by preventing protein aggregation during abiotic stress conditions, especially heat stress. Due to global climate change, high temperature is emerging as a major threat to wheat productivity. Thus, the identification of HSP20 and analysis of HSP transcriptional regulation under different abiotic stresses in wheat would help in understanding the role of these proteins in abiotic stress tolerance. We used sequences of known rice and Arabidopsis HSP20 HMM profiles as queries against publicly available wheat genome and wheat full length cDNA databases (TriFLDB) to identify the respective orthologues from wheat. 163 TaHSP20 (including 109 sHSP and 54 ACD) genes were identified and classified according to the sub-cellular localization and phylogenetic relationship with sequenced grass genomes (Oryza sativa, Sorghum bicolor, Zea mays, Brachypodium distachyon and Setaria italica). Spatio-temporal, biotic and abiotic stress-specific expression patterns in normalized RNA seq and wheat array datasets revealed constitutive as well as inductive responses of HSP20 in different tissues and developmental stages of wheat. Promoter analysis of TaHSP20 genes showed the presence of tissue-specific, biotic, abiotic, light-responsive, circadian and cell cycle-responsive cis-regulatory elements. 14 TaHSP20 family genes were under the regulation of 8 TamiRNA genes. The expression levels of twelve HSP20 genes were studied under abiotic stress conditions in the drought- and heat-tolerant wheat genotype C306. Of the 13 TaHSP20 genes, TaHSP16.9H-CI showed high constitutive expression with upregulation only under salt stress. Both heat and salt stresses upregulated the expression of TaHSP17.4-CI, TaHSP17.7A-CI, TaHSP19.1-CIII, TaACD20.0B-CII and TaACD20.6C-CIV, while TaHSP23.7-MTI was specifically induced only under heat stress. Our results showed that the identified TaHSP20 genes play an important role under different abiotic stress conditions. Thus, the results illustrate the complexity of the TaHSP20 gene family and its stress regulation in wheat, and suggest that sHSPs as attractive breeding targets for improvement of the heat tolerance of wheat.
Keywords: Abiotic stress; Cold; High temperature; Salt stress; TaHSP20; Triticum aestivum; sHSP; α-Crystalline C-terminal domain.
Copyright © 2017 Elsevier GmbH. All rights reserved.