The success of cell-based therapies to restore joint cartilage requires an optimal source of reparative progenitor cells and tight control of their differentiation into a permanent cartilage phenotype. Bone morphogenetic protein 2 (BMP-2) has been extensively shown to promote mesenchymal cell differentiation into chondrocytes in vitro and in vivo. Conversely, developmental studies have demonstrated decreased chondrocyte maturation by Wingless-Type MMTV Integration Site Family, Member 5A (Wnt5a). Thus, we hypothesized that treatment of human embryonic stem cell (hESC)-derived chondroprogenitors with BMP-2 followed by Wnt5a may control the maturational progression of these cells into a hyaline-like chondrocyte phenotype. We examined the effects of sustained exposure of hESC-derived mesenchymal-like progenitors to recombinant Wnt5a or BMP-2 in vitro. Our data indicate that BMP-2 promoted a strong chondrogenic response leading to terminal maturation, whereas recombinant Wnt5a induced a mild chondrogenic response without promoting hypertrophy. Moreover, Wnt5a suppressed BMP-2-mediated chondrocyte maturation, preventing the formation of fibrocartilaginous tissue in high-density cultures treated sequentially with BMP-2 and Wnt5a. Implantation of scaffoldless pellets of hESC-derived chondroprogenitors pretreated with BMP-2 followed by Wnt5a into rat chondral defects induced an articular-like phenotype in vivo. Together, the data establish a novel role for Wnt5a in controlling the progression from multipotency into an articular-like cartilage phenotype in vitro and in vivo. Stem Cells Translational Medicine 2017;6:40-50.
Keywords: Articular cartilage; BMP-2; Embryonic stem cells; Mesenchymal stem cells; Wnt5a.
© 2016 The Authors Stem Cells Translational Medicine published by Wiley Periodicals, Inc. on behalf of AlphaMed Press.