In the human brain, pLG72 interacts with the flavoenzyme d-amino acid oxidase (hDAAO), which is involved in catabolism of d-serine, a co-agonist of N-methyl-d-aspartate receptors (NMDAR). Here, we investigated the wild-type pLG72, the R30K variant associated with schizophrenia susceptibility, and the K62E variant. The protein conformation, oligomeric state, ligand-, and hDAAO-binding properties are only slightly modified by the substitutions. All pLG72 variants inhibit hDAAO and lead to an increase in cellular (d/d+l)-serine. However, the R30K pLG72 is significantly more prone to degradation than the R30 and the K62E variants in a cell system, thus possessing a lower ability to interact/inhibit hDAAO. This links R30K pLG72 with the hyperactivity of hDAAO, the decreased d-serine level, and NMDAR hypofunction observed in schizophrenia-affected patients.
Keywords: d-amino acid oxidase; d-serine; protein-protein interaction; regulation; schizophrenia.
© 2017 Federation of European Biochemical Societies.