The controlled induction of haemoxygenase-1 (HO-1), an enzyme that catabolizes haem, has been shown to reduce haem, preventing pathologies associated with haem toxicity. The hemoglobin genotype HbAS confers reduced susceptibility to severe complications of malaria by a mechanism that is not well understood. Using a longitudinal approach, we investigated the effect of baseline concentrations of HO-1 on the accumulation of haem during acute Plasmodium falciparum malaria in HbAS and HbAA genotypes. Plasma concentrations of haem, HO-1 and cytokines were quantified in venous blood obtained from children (9 months-5 years of age) during malaria infection, and at convalescence (baseline levels). Parasitaemia was determined during malaria infection. In patients with the HbAA genotype, there was a significant elevation in the plasma concentration of haem (P = 0.002), and a consequent increased induction of HO-1 (P < 0.001) during falciparum malaria compared with levels at convalescence. Contrary to HbAA, plasma concentration of haem did not change in the HbAS genotypical group (P = 0·110), and the induction of HO-1 was reduced during malaria compared with levels at convalescence (P = 0·006). Higher plasma levels of haem were observed in HbAS compared with HbAA at convalescence (P = 0·010), but this difference did not affect the levels of HO-1 within each genotype (P = 0·450). Relatively milder proinflammatory responses were observed in HbAS children during malaria infection compared to HbAA children. Our findings suggest that a mechanism of reduced susceptibility to severe malaria pathologies by the HbAS genotype may involve the control of haem, leading to controlled levels of HO-1 and milder proinflammatory responses during acute malaria.
Keywords: haem; haemoxygenase-1; malaria; sickle cell trait.
© 2017 The Authors. Clinical & Experimental Immunology published by John Wiley & Sons Ltd on behalf of British Society for Immunology.