In the framework of meta-analysis, moderator analysis is usually performed only univariately. When several study characteristics are available that may account for treatment effect, standard meta-regression has difficulties in identifying interactions between them. To overcome this problem, meta-CART has been proposed: an approach that applies classification and regression trees (CART) to identify interactions, and then subgroup meta-analysis to test the significance of moderator effects. The previous version of meta-CART has its shortcomings: when applying CART, the sample sizes of studies are not taken into account, and the effect sizes are dichotomized around the median value. Therefore, this article proposes new meta-CART extensions, weighting study effect sizes by their accuracy, and using a regression tree to avoid dichotomization. In addition, new pruning rules are proposed. The performance of all versions of meta-CART was evaluated via a Monte Carlo simulation study. The simulation results revealed that meta-regression trees with random-effects weights and a 0.5-standard-error pruning rule perform best. The required sample size for meta-CART to achieve satisfactory performance depends on the number of study characteristics, the magnitude of the interactions, and the residual heterogeneity.
Keywords: classification and regression trees; interaction between moderators; meta-analysis; residual heterogeneity; weighted effect sizes.
© 2017 The British Psychological Society.