Nanomedicine offers new hope to overcome the low solubility and high side toxicity to normal tissue appeared in traditional chemotherapy. The biocompatibility and intracellular drug accumulation is still a big challenge for the nano-based formulations. Herein, a medical-used biocompatible arabinoxylan (AX) is used to develop to delivery chemodrug doxorubicin (DOX). The solubility of DOX is obviously enhanced via the hydrogen bond formed with AX which results in an amphiphilic AX-DOX. A micelle with pH-cleavable bond is thus self-assembled from such AX-DOX with DOX core and AX shell. The inner DOX can be easily released out at low intracellular pH, which obviously enhanced its in vitro cytotoxicity against breast cancer cells (MCF-7). Interestingly, an unexpected apoptosis is evoked except for the proliferation inhibition. Moreover, the therapeutic effects are further synergistically promoted by the enhanced permeability and retention (EPR) and intracellular pH-triggered drug release. Consequently, the in vivo intratumor accumulation of DOX, the tumor inhibition was significantly promoted after intravenous administration to the Balb/c nude mice bearing MCF-7 tumors. These in vitro/vivo results indicated that the AX-DOX micellular formulation holds high potential in cancer therapy.
Keywords: Biocompatibility; Micelle; Nanomedicine; Synergistic antitumor therapy; pH-cleavable bond.