Oligouridylate binding protein 1b (UBP1b), a marker protein of plant stress granules (SGs), plays a role in heat stress tolerance in plants. A previous microarray analysis revealed that the expression of several ABA signaling-related genes is higher in UBP1b-overexpressing Arabidopsis plants (UBP1b-ox) subjected to both non-stressed and heat stress conditions. Root elongation and seed germination assays demonstrated that UBP1b-ox exhibited hypersensitivity to ABA. RT-qPCR analysis confirmed that mitogen-activated protein kinase (MAPK) cascade genes, such as MPK3, MKK4, and MKK9 were upregulated in UBP1b-ox plants. ABA receptor genes, including PYL5 and PYL6, were also upregulated in UBP1b-ox plants. mRNA of WRKY33 - a downstream gene of MPK3 and an upstream gene of ethylene biosynthesis, exhibited high levels of accumulation, although the level of endogenous ABA was not significantly different between UBP1b-ox and control plants. In addition, RNA decay analysis revealed that WRKY33 was more stable in UBP1b-ox plants, indicating that the mRNA of WRKY33 was protected within UBP1b SGs. Collectively, these data demonstrate that UBP1b plays an important role in plant response to ABA.
Keywords: ABA response; ABA sensitivity; RNA stability; UBP1b; UBP1b stress granule.