The rodent protoparvovirus H-1PV, with its oncolytic and oncosuppressive properties, is a promising anticancer agent currently under testing in clinical trials. This explains the current demand for a scalable, good manufacturing practice-compatible virus purification process yielding high-grade pure infectious particles and overcoming the limitations of the current system based on density gradient centrifugation. We describe here a scalable process offering high purity and recovery. Taking advantage of the isoelectric point difference between full and empty particles, it eliminates most empty particles. Full particles have a significantly higher cationic charge than empty ones, with an isoelectric point of 5.8-6.2 versus 6.3 (as determined by isoelectric focusing and chromatofocusing). Thanks to this difference, infectious full particles can be separated from empty particles and most protein impurities by Convective interaction media® diethylaminoethyl (DEAE) anion exchange chromatography: applying unpurified H-1PV to the column in 0.15 M NaCl leaves, the former on the column and the latter in the flow through. The full particles are then recovered by elution with 0.25 M NaCl. The whole large-scale purification process involves filtration, single-step DEAE anion exchange chromatography, buffer exchange by cross-flow filtration, and final formulation in Visipaque/Ringer solution. It results in 98% contaminating protein removal and 96% empty particle elimination. The final infectious particle concentration reaches 3.5E10 plaque forming units (PFU)/ml, with a specific activity of 6.8E11 PFU/mg protein. Overall recovery is over 40%. The newly established method is suitable for use in commercial production.
Keywords: CIM® column; Chromatography; Empty capsid elimination; H-1 parvovirus; Upscaling; pI.