The amino acid sequence of the sex steroid-binding protein (SBP or SHBG) of rabbit serum, specific for binding testosterone and 5 alpha-dihydrotestosterone, was determined using a complementary combination of mass spectrometric and Edman degradation techniques. The monomeric unit of the homodimeric protein is a single chain glycopeptide of 367 amino acid residues, with N-linked oligosaccharide side chains at Asn-345 and Asn-361 and disulfide bonds connecting Cys-158 to Cys-182 and Cys-327 to Cys-355. The polypeptide molecular weight of the monomer calculated from the sequence is 39,769. The molecular weight of the homodimer including 9% carbohydrate is 87,404. The sequence contains a relatively hydrophobic segment between Trp-241 and Leu-282, which includes many leucine residues in an alternating pattern. An amino acid sequence repeat is also located within that segment. Both of these patterns are present in human SBP and in the androgen-binding protein of rat epididymis. The sequence data indicate that the previously reported microheterogeneity of rabbit SBP in sodium dodecyl sulfate-polyacrylamide gel electrophoresis reflects variants generated by differential glycosylation of the monomer rather than different gene products. Seventy-nine percent of the amino acids of rabbit SBP are identical to those of human SBP; rabbit SBP thus joins human SBP and rat androgen-binding protein in one gene family that is distinct from the steroid hormone receptor superfamily. It appears that the problem of binding sex steroid hormones has been solved independently in two different gene families that contain completely different steroid-binding domains. Since the nonhomologous steroid-binding domains of both families of proteins recognize essentially the same steroid structure, it will be interesting to determine the structural basis of the two different protein designs that lead to similar steroid-binding specificity.