Patients with congenital thrombocytopenia have an increased risk of developing myeloid neoplasms. In these cases, the morphologic distinction between disease at baseline and at progression is challenging. This report analyzes clinicopathologic features of congenital thrombocytopenia with long-term follow-up at one referral center. Records from the last 20 years were searched for cases of congenital thrombocytopenia with bone marrow biopsies and peripheral blood smears. The clinical, morphologic, immunophenotypic, and molecular features were analyzed. Six adult and two pediatric patients were identified (six male, two female). Age range at first biopsy was 1-47 (median, 31) years. Underlying diseases included thrombocytopenia-absent radius syndrome, congenital thrombocytopenia with radial-ulnar synostosis, MYH9-related disorder, shortened telomere syndrome, congenital thrombocytopenia with ANKRD26 mutation, and familial platelet disorder with predisposition to acute myeloid leukemia. Four patients had myelodysplastic/myeloproliferative neoplasm-like marrow changes such as hypercellularity, increased myeloid to erythroid ratio, numerous micromegakaryocytes (highlighted by CD42b), and marrow fibrosis. Two patients had marrow hypoplasia and two had unremarkable marrow morphology. Three patients-all in the myelodysplastic/myeloproliferative neoplasm-like group-developed disease progression characterized by erythroid and myeloid dysplasia, elevated bone marrow blasts, and new cytogenetic abnormalities. Unlike non-familial myeloid neoplasms, congenital thrombocytopenia patients in the myelodysplastic/myeloproliferative neoplasm-like group had a long and indolent clinical course (average age at disease progression, 47 years). In summary, three distinct morphologic types of congenital thrombocytopenia were identified: a hyperplastic myelodysplastic/myeloproliferative neoplasm-like group, a hypoplastic bone marrow failure-like group, and a group with relatively normal marrow morphology. Emergence of cytogenetic abnormalities and dysplasia in non-megakaryocyte lineages correlated with disease progression.