Angiogenesis is defined as the physiological process by which new blood vessels develop from pre-existing vessels; either by sprouting or intussusception. Inhibition of angiogenesis is one of the most encouraging strategies to manage the growth and metastasis of cancers. The functional and proliferative status of blood vessels is regulated by the balance between various key molecules that either stimulate or inhibit angiogenesis. During quiescence, the "angiogenic switch" is "off". However, during tumour development pro-angiogenic factors such as vascular endothelial growth factor (VEGF), basic and acidic fibroblast growth factor, tumour necrosis factor-α and interleukin-1 are pathologically enhanced. Persistent growth of tumour directed capillary networks creates a favourable microenvironment, promoting cancer growth, progression and metastasis. VEGF, particularly VEGF-A, is a key angiogenic factor. Targeting VEGF, its receptors and the downstream signaling cascade, is a viable strategy to prevent tumour growth and metastasis. The present review discusses the role of VEGF in tumour angiogenesis and the current understanding of anti-VEGF therapies as well as refractoriness of anti-angiogenesis cancer therapy.
Keywords: VEGF; angiogenic balance; anti-VEGF therapy; extracellular matrix; food and drug administration; tumour angiogenesis.
Copyright© Bentham Science Publishers; For any queries, please email at epub@benthamscience.org.