Radiotherapy is an effective form of therapy for most thoracic malignant tumors. However, myocardial injury resulting from the high doses of radiation is a severe complication. Here we aimed to study the possibility of reducing radiation-induced myocardial injury with mesenchymal stem cell (MSC) transplantation. We used MSCs extracted from bone marrow (BMSCs) to transplant via the tail vein into a radiation-induced heart injury (RIHI) rat model. The rats were divided into six groups: a Sham group, an IRR (irradiation) group, and four IRR + BMSCs transplantation groups obtained at different time points. After irradiation, BMSC transplantation significantly enhanced the cardiac function in rats. By analyzing the expression of PPAR-α, PPAR-γ, TGF-β, IL-6, and IL-8, we found that BMSC transplantation alleviated radiation-induced myocardial fibrosis and decreased the inflammatory reaction. Furthermore, we found that expression of γ-H2AX, XRCC4, DNA ligase4, and TP53BP1, which are associated with DNA repair, was up-regulated, along with increased secretion of growth factors SDF-1, CXCR4, VEGF, and IGF in rat myocardium in the IRR + BMSCs transplantation groups compared with the IRR group. Thus, BMSC transplantation has the potential to improve RIHI via DNA repair and be a new therapeutic approach for patients with myocardial injury.
Keywords: BMSC transplantation; DNA damage; Heart injury; Radiation; Repair.