Mosquito-borne illnesses are of great concern throughout the world, and chemical insecticides are commonly employed to decrease mosquito populations. However, the developmental insecticide pipeline for vector control has primarily been filled by repurposed agricultural products, and is hampered by their widespread use and insecticide resistance. The present study was performed in the search for new chemical insecticides or insecticide synergists. Screening of 31 chalcone analogs was performed using Aedes aegypti (Linnaeus) first-instar larval toxicity assay, and oral feeding to Drosophila melanogaster's proper authority should be (Meigen). Synergism studies were performed by topically applying chalcones to adult female Ae. aegypti mosquitoes to examine its impact on activity of carbaryl, which was compared to piperonyl butoxide alone. Fourteen chalcone analogs had LC50 values in the range of 0.4-38 ppm against first-instar Ae. aegypti larvae, and three chalcones displayed toxicity against D. melanogaster via feeding (LC50 values ranged from 146-214 μg/ml). Two chalcones synergized carbaryl toxicity against adult Ae. aegypti with efficacy similar to piperonyl butoxide. As a result, it is concluded that chalcones may serve as novel insecticides and synergists after further structural optimization.
Keywords: insecticide; larvicide; mosquito; synergist.
© The Authors 2016. Published by Oxford University Press on behalf of Entomological Society of America. All rights reserved. For Permissions, please email: journals.permissions@oup.com.