How to Build a Deep Diver: The Extreme Morphology of Mesoplodonts

Integr Comp Biol. 2016 Dec;56(6):1337-1348. doi: 10.1093/icb/icw126.

Abstract

Mesoplodont beaked whales are extreme divers, diving for over 45 mins and to depths of over 800 m. These dives are of similar depth and duration to those of the giant sperm whale (Physeter macrocephalus) whose body mass can be 50 times larger. Velten et al. (2013) provided anatomical data that demonstrated that on-board oxygen stores were sufficient to aerobically support the extreme dives of mesoplodonts if their diving metabolic rates are low. Because no physiological data yet exist, we utilized an anatomical approach-the body composition technique-to examine the relative metabolic rates of mesoplodonts. We utilized a systematic mass dissection protocol to compare the body composition of mesoplodonts with those of two short duration, shallow divers-the harbor porpoise (Phocoena phocoena) and bottlenose dolphin (Tursiops truncatus). We then investigated the body composition of two other extreme divers, the southern elephant seal (Mirounga leonina) and P. macrocephalus using data from the literature. Our results demonstrate that extreme divers invest a smaller percentage of their total body mass (TBM) in metabolically expensive brain and viscera, and a larger percent of their TBM in inexpensive integument, bone, and muscle, than do the shallow divers. Deep divers also share features of their locomotor muscle that contribute to relatively low tissue metabolic rates and high oxygen storage capacity, including large muscle fiber diameters, low mitochondrial volume densities, and high myoglobin concentrations. One feature of the locomotor muscle of mesoplodonts, though, is unique among deep divers investigated to date. Rather than having an endurance athlete's muscle fiber profile, dominated by slow oxidative fibers, mesoplodonts possess a sprinter's profile, dominated by fast glycolytic fibers. Velten et al. (2013) hypothesized that these fibers are likely inactive during routine swimming and provide a large, metabolically inexpensive oxygen store for the slow oxidative fibers to aerobically power swimming. We suggest that future anatomical analyses, coupled with performance data transduced through tagging studies, will enhance our understanding of the extreme diving capabilities of marine mammals.

MeSH terms

  • Animals
  • Diving / physiology*
  • Muscle Fibers, Skeletal / cytology
  • Muscle Fibers, Skeletal / metabolism
  • Oxygen Consumption / physiology
  • Swimming / physiology
  • Whales / anatomy & histology*