A Molecular Basis for the Presentation of Phosphorylated Peptides by HLA-B Antigens

Mol Cell Proteomics. 2017 Feb;16(2):181-193. doi: 10.1074/mcp.M116.063800. Epub 2016 Dec 5.

Abstract

As aberrant protein phosphorylation is a hallmark of tumor cells, the display of tumor-specific phosphopeptides by Human Leukocyte Antigen (HLA) class I molecules can be exploited in the treatment of cancer by T-cell-based immunotherapy. Yet, the characterization and prediction of HLA-I phospholigands is challenging as the molecular determinants of the presentation of such post-translationally modified peptides are not fully understood. Here, we employed a peptidomic workflow to identify 256 unique phosphorylated ligands associated with HLA-B*40, -B*27, -B*39, or -B*07. Remarkably, these phosphopeptides showed similar molecular features. Besides the specific anchor motifs imposed by the binding groove of each allotype, the predominance of phosphorylation at peptide position 4 (P4) became strikingly evident, as was the enrichment of basic residues at P1. To determine the structural basis of this observation, we carried out a series of peptide binding assays and solved the crystal structures of HLA-B*40 in complex with a phosphorylated ligand or its nonphosphorylated counterpart. Overall, our data provide a clear explanation to the common motif found in the phosphopeptidomes associated to different HLA-B molecules. The high prevalence of phosphorylation at P4 is dictated by the presence of the conserved residue Arg62 in the heavy chain, a structural feature shared by most HLA-B alleles. In contrast, the preference for basic residues at P1 is allotype-dependent and might be linked to the structure of the A pocket. This molecular understanding of the presentation of phosphopeptides by HLA-B molecules provides a base for the improved prediction and identification of phosphorylated neo-antigens, as potentially used for cancer immunotherapy.

Publication types

  • Research Support, Non-U.S. Gov't

MeSH terms

  • Amino Acid Motifs
  • Cell Line
  • Crystallography, X-Ray
  • HLA-B Antigens / chemistry*
  • HLA-B Antigens / metabolism*
  • HLA-B40 Antigen / chemistry
  • HLA-B40 Antigen / metabolism
  • Humans
  • Models, Molecular
  • Peptides / analysis
  • Peptides / chemistry*
  • Phosphorylation
  • Protein Binding
  • Proteomics / methods*

Substances

  • HLA-B Antigens
  • HLA-B40 Antigen
  • Peptides

Associated data

  • PDB/3NL5
  • PDB/5IEH
  • PDB/5IEK