We test the hypothesis that cytosolic inorganic phosphate (Pi) can account for the contraction-induced reductions in twitch duration which impair summation and cause force to decline (sag) during unfused tetanic contractions of fast-twitch muscle. A five-state model of crossbridge cycling was used to simulate twitch and unfused tetanic contractions. As Pi concentration ([Pi]) was increased from 0 to 30 mmol·L-1, twitch duration decreased, with progressive reductions in sensitivity to Pi as [Pi] was increased. When unfused tetani were simulated with rising [Pi], sag was most pronounced when initial [Pi] was low, and when the magnitude of [Pi] increase was large. Fast-twitch extensor digitorum longus (EDL) muscles (sag-prone, typically low basal [Pi]) and slow-twitch soleus muscles (sag-resistant, typically high basal [Pi]) were isolated from 14 female C57BL/6 mice. Muscles were sequentially incubated in solutions containing either glucose or pyruvate to create typical and low Pi environments, respectively. Twitch duration was greater (P < 0.05) in pyruvate than glucose in both muscles. Stimuli applied at intervals approximately three times the time to peak twitch tension resulted in sag of 35.0 ± 3.7% in glucose and 50.5 ± 1.4% in pyruvate in the EDL (pyruvate > glucose; P < 0.05), and 3.9 ± 0.3% in glucose and 37.8 ± 2.7% in pyruvate in the soleus (pyruvate > glucose; P < 0.05). The influence of Pi on crossbridge cycling provides a tenable mechanism for sag. Moreover, the low basal [Pi] in fast-twitch relative to slow-twitch muscle has promise as an explanation for the fiber-type dependency of sag.
Keywords: Crossbridge cycling; EDL; fast‐ and slow‐twitch muscle; muscle stimulation; simulated contraction; soleus; twitch kinetics.
© 2016 The Authors. Physiological Reports published by Wiley Periodicals, Inc. on behalf of The Physiological Society and the American Physiological Society.