Social cognitive theory (SCT) is among the most influential theories of behavior change and has been used as the conceptual basis of health behavior interventions for smoking cessation, weight management, and other health behaviors. SCT and other behavior theories were developed primarily to explain differences between individuals, but explanatory theories of within-person behavioral variability are increasingly needed as new technologies allow for intensive longitudinal measures and interventions adapted from these inputs. These within-person explanatory theoretical applications can be modeled as dynamical systems. SCT constructs, such as reciprocal determinism, are inherently dynamical in nature, but SCT has not been modeled as a dynamical system. This paper describes the development of a dynamical system model of SCT using fluid analogies and control systems principles drawn from engineering. Simulations of this model were performed to assess if the model performed as predicted based on theory and empirical studies of SCT. This initial model generates precise and testable quantitative predictions for future intensive longitudinal research. Dynamic modeling approaches provide a rigorous method for advancing health behavior theory development and refinement and for guiding the development of more potent and efficient interventions.
Keywords: Computational modeling; Control systems engineering; Dynamical system modeling; Health behavior theory; Social cognitive theory.