Western-style diet (WD) and dysbiosis are known to be associated with colonic inflammation, which contributes to carcinogenesis. Metformin (Met) exerts anti-inflammatory effects to induce AMP-activated protein kinase (AMPK), resulting in suppressed protein synthesis and reduced cell proliferation. Probiotic VSL#3 (V) modifies microbial composition. We investigated the chemopreventive mechanisms of Met and V in WD-induced colitis-associated colon carcinogenesis. Male BALB/c mice were randomly divided into five groups: a control diet (CD) group, WD group, WD+ Met (250mg/kg/day) group, WD+V (1.3 million bacteria/day) group, and WD+Met+V group. All mice were exposed to azoxymethane (10mg/kg) followed by 2% dextran sodium sulfate (DSS) for 7 days. Using HCT-116 human colon cancer cell line, expression of AMPK, extracellular signal-regulated kinase (ERK), cyclin D1, and Bcl-2 was investigated and cell cycle arrest was assessed. WD enhanced the severity of colitis and tumor growth compared with CD. The combination of Met and V significantly ameliorated colitis and tumor growth by inhibiting macrophage infiltration and maintaining epithelial integrity. In vitro assays showed that the combination therapy promoted late apoptosis by inhibiting cyclin D1 and Bcl-2 and activating pro-apoptotic ERK. A combination therapy with Met and V attenuates tumor growth in a mouse model of WD-induced colitic cancer, suggesting that this strategy could be useful for the chemoprevention of colon cancer.
Keywords: Chemoprevention; Colon cancer; Metformin; VSL#3; Western-style diet.
Copyright © 2016 Elsevier B.V. All rights reserved.