In this study, we investigate the effect of nucleotide content on the conductivity of plasmid length DNA molecular wires covalently bound to high aspect-ratio gold electrodes. The DNA wires were all between [Formula: see text] in length (>6000bp), and contained either 39%, 53%, or 64% GC base-pairs. We compared the current-voltage (I-V) and frequency-impedance characteristics of the DNA wires with varying GC content, and observed statistically significantly higher conductivity in DNA wires containing higher GC content in both AC and DC measurement methods. Additionally, we noted that the conductivity decreased as a function of time for all DNA wires, with the impedance at 100 Hz nearly doubling over a period of seven days. All readings were taken in humidity and temperature controlled environments on DNA wires suspended above an insulative substrate, thus minimizing the effect of experimental and environmental factors as well as potential for nonlinear alternate DNA confirmations. While other groups have studied the effect of GC content on the conductivity of nanoscale DNA molecules (<50bp), we were able to demonstrate that nucleotide content can affect the conductivity of micrometer length DNA wires at scales that may be required during the fabrication of DNA-based electronics. Furthermore, our results provide further evidence that many of the charge transfer theories developed from experiments using nanoscale DNA molecules may still be applicable for DNA wires at the micro scale.