The development and progression of cancer can be ascribed to imbalances in gene regulation leading to aberrant cellular behavior. The loss of micro RNAs (miRNAs) exhibiting tumor-suppressive function has been demonstrated to be often causative for uncontrolled cell proliferation, migration or tissue infiltration. The installation of de novo tumor suppressive function by using pro-apoptotic miRNAs might be a promising therapeutic approach. In addition, there is a great demand for novel biomarkers for the prognosis of cancer, which prompted us to transfer a high content miRNA screening initially performed to identify bioprocess relevant miRNAs in Chinese hamster ovary (CHO) cells to human cancer cell lines . Analysis of screened miRNAs exhibiting strongest pro-apoptotic effects discovered globally and cross-species active candidates. The recovery rate of apoptosis inducing miRNAs was highest in the human ovarian carcinoma cell line SKOV3. Focusing on ovarian cell lines miR-1912, miR-147b and miR-3073a showed significant apoptosis induction in cell lines with different genetic background (SKOV3p53null, OVCAR3p53R248Q, TOV21G, TOV112Dp53R175H, A2780, A2780-cisp53K351N) alone and additive effects in combination with carboplatin. While expression analysis revealed a low endogenous expression of miR-1912 and miR-147b in SKOV3, miRNA expression was highly upregulated upon apoptosis induction using chemotherapeutics. Ectopic introduction of these miRNAs lead to enhanced activation of caspase-dependent death signaling and an induction of the pro-apoptotic proteins Bak1 and Bax and a reduced expression of Bcl2 and Bcl-xL. Finally, analysis of The Cancer Genome Atlas data revealed the expression of hsa-miR-147b-5p to show a positive influence on the median survival of ovarian cancer patients.
Keywords: apoptosis; biomarker; miR-147b; ovarian cancer; prognosis.