Mobile barnacle cypris larvae settle and metamorphose, transitioning to sessile juveniles with morphology and growth similar to that of adults. Because biofilms exist on immersed surfaces on which they attach, barnacles must interact with bacteria during initial attachment and subsequent growth. The objective of this study was to characterize the developing interface of the barnacle and substratum during this key developmental transition to inform potential mechanisms that promote attachment. The interface was characterized using confocal microscopy and fluorescent dyes to identify morphological and chemical changes to the interface and the status of bacteria present as a function of barnacle developmental stage. Staining revealed patchy material containing proteins and nucleic acids, reactive oxygen species amidst developing cuticle, and changes in bacteria viability at the developing interface. We found that as barnacles metamorphose from the cyprid to juvenile stage, proteinaceous materials with the appearance of coagulated liquid were released into and remained at the interface. It stained positive for proteins, including phosphoprotein, as well as nucleic acids. Regions of the developing cuticle and the patchy material itself stained for reactive oxygen species. Bacteria were absent until the cyprid was firmly attached, but populations died as barnacle development progressed. The oxidative environment may contribute to the cytotoxicity observed for bacteria and has the potential for oxidative crosslinking of cuticle and proteinaceous materials at the interface.
Keywords: Antimicrobial; Attachment; Bacteria; Confocal; Fouling; Reactive oxygen species.
© 2017. Published by The Company of Biologists Ltd.