Aim: To analyze the association between oncohematological diseases and GSTT1/GSTM1/CYP1A1 polymorphisms, dietary habits and smoking, in an argentine hospital-based case-control study.
Methods: This hospital-based case-control study involved 125 patients with oncohematological diseases and 310 control subjects. A questionnaire was used to obtain sociodemographic data and information about habits. Blood samples were collected, and DNA was extracted using salting out methods. Deletions in GSTT1 and GSTM1 (null genotypes) were addressed by PCR. CYP1A1 MspI polymorphism was detected by PCR-RFLP. Odds ratio (OR) and 95%CI were calculated to estimate the association between each variable studied and oncohematological disease.
Results: Women showed lower risk of disease compared to men (OR 0.52, 95%CI: 0.34-0.82, P = 0.003). Higher levels of education (> 12 years) were significantly associated with an increased risk, compared to complete primary school or less (OR 3.68, 95%CI: 1.82-7.40, P < 0.001 adjusted for age and sex). With respect to tobacco, none of the smoking categories showed association with oncohematological diseases. Regarding dietary habits, consumption of grilled/barbecued meat 3 or more times per month showed significant association with an increased risk of disease (OR 1.72, 95%CI: 1.08-2.75, P = 0.02). Daily consumption of coffee also was associated with an increased risk (OR 1.77, 95%CI: 1.03-3.03, P = 0.03). Results for GSTT1, GSTM1 and CYP1A1 polymorphisms showed no significant association with oncohematological diseases. When analyzing the interaction between polymorphisms and tobacco smoking or dietary habits, no statistically significant associations that modify disease risk were found.
Conclusion: We reported an increased risk of oncohematological diseases associated with meat and coffee intake. We did not find significant associations between genetic polymorphisms and blood cancer.
Keywords: CYP1A1; Cancer; Case-control study; Diet; GSTM1; GSTT1; Lifestyle; Oncohematological disease; Tobacco; Xenobiotic metabolizing genes.