A study was conducted to evaluate the effect of four different feeding regimens on breast muscle protein turnover in broiler breeder Cobb-500 parent stock (PS) pullets and breeder hens. The four feeding regimens based on BW curves utilized for the study were as follows: Everyday feeding (STD-ED) (Cobb Standard BW curve), skip-a-day feeding (STD-SKIP) (Cobb Standard BW curve), lighter BW (LBW-SKIP) (BW curve 20% under), and heavier BW (HBW-SKIP) (BW curve 20% over). Each feeding regimen was provided to pullets from 4 wk to 21 wk of age. Protein turnover was determined in PS pullets/breeders at 6, 10, 12, 16, 21, 25, 31, 37, 46, and 66 wk of age. A completely randomized design was used with a 4 × 10 factorial arrangement (four feeding regimens, 10 ages), each pullet represented a replicate. Five pullets/breeders at each age were given an intravenous flooding-dose of 15N-Phe (15N phenylalanine 150 mM, 40 APE (atom percent excess)) at a dose of 10 mL/kg BW for the determination of fractional synthesis rate (FSR). After 10 min, birds were euthanized and the breast muscle (pectoralis major) excised for protein turnover and gene expression analysis. Excreta was collected from each pullet or breeder for 3-methylhistidine (3-MH) analysis. No feeding regimen affected protein turnover. There was an age effect for breast muscle FSR. The FSR in breast muscle of pullets significantly increased from 6 wk to 12 wk and then decreased significantly for 31 wk-old breeders. FSR in breeder breast muscle increased significantly from 31 wk to 66 wk. There was an age effect for breast muscle fractional breakdown rate (FBR). FBR in breast muscle significantly increased from 21 wk to 25 wk and 31 wk (peak egg production), then significantly decreased at 66 wk. The expression of the genes related to protein degradation (Atrogin-1, MURF-1) in breast muscle was significantly higher at peak egg production. Protein turnover in skeletal muscle tissue is believed to be a source of nutrients for egg production.
Keywords: 15N phenylalanine; broiler breeders; fractional breakdown rate; fractional synthesis rate; protein turnover.
© 2016 Poultry Science Association Inc.