Purpose: To develop and assess ultrashort echo-time (UTE) magnetic resonance imaging (MRI) biomarkers of lung function in asthma patients.
Materials and methods: Thirty participants including 13 healthy volunteers and 17 asthmatics provided written informed consent to UTE and pulmonary function tests in addition to hyperpolarized-noble-gas 3T MRI and computed tomography (CT) for asthmatics only. The difference in MRI signal-intensity (SI) across four lung volumes (full-expiration, functional-residual-capacity [FRC], FRC+1L, and full-inspiration) was determined on a voxel-by-voxel basis to generate dynamic proton-density (DPD) maps. MRI ventilation-defect-percent (VDP), UTE SI, and DPD values as well as CT radiodensity were determined for whole lung and individual lobes.
Results: Mean SI at full-expiration (P < 0.01), FRC (P < 0.05), and DPD (P < 0.01) were greater in healthy volunteers compared to asthmatics. In asthmatics, UTE SI at full-expiration and DPD were correlated with FEV1 /FVC (SI r = 0.73/P = 0.002; DPD r = 0.75/P = 0.003), RV/TLC (SI r = -0.57/P = 0.02), or RV (DPD r = -0.62/P = 0.02), CT radiodensity (SI r = 0.83/P = 0.006; DPD r = 0.71/P = 0.01), and lobar VDP (SI rs = -0.33/P = 0.02; DPD rs = -0.47/P = 0.01).
Conclusion: In patients with asthma, UTE SI and dynamic proton-density were related to pulmonary function measurements, whole lung and lobar VDP, as well as CT radiodensity. Thus, UTE MRI biomarkers may reflect ventilation heterogeneity and/or gas-trapping in asthmatics using conventional equipment, making this approach potentially amenable for clinical use.
Level of evidence: 2 J. Magn. Reson. Imaging 2017;45:1204-1215.
Keywords: 1H MRI; asthma; ultrashort echo time.
© 2016 International Society for Magnetic Resonance in Medicine.