Ethanol is a widely used psychoactive drug whose chronic abuse is associated with organ dysfunction and disease. Although the prevalent metabolic fate of ethanol in the human body is oxidation a smaller fraction undergoes nonoxidative metabolism yielding ethyl glucuronide, ethyl sulfate, phosphatidylethanol and fatty acid ethyl esters. Nonoxidative ethanol metabolites persist in tissues and body fluids for much longer than ethanol itself and represent biomarkers for the assessment of ethanol intake in clinical and forensic settings. Of note, the nonoxidative reaction of ethanol with phospholipids and fatty acids yields bioactive compounds that affect cellular signaling pathways and organelle function and may contribute to ethanol toxicity. Thus, despite low quantitative contributions of nonoxidative pathways to overall ethanol metabolism the resultant ethanol metabolites have important biological implications. In this review we summarize the current knowledge about the enzymatic formation of nonoxidative ethanol metabolites in humans and discuss the implications of nonoxidative ethanol metabolites as biomarkers of ethanol intake and mediators of ethanol toxicity. © 2016 IUBMB Life, 68(12):916-923, 2016.
Keywords: ethyl glucuronide; ethyl sulfate; fatty acid ethyl ester; nonoxidative ethanol metabolism; phosphatidylethanol.
© 2016 International Union of Biochemistry and Molecular Biology.