Exercise-induced brachial artery blood flow and vascular function is impaired in systemic sclerosis

Am J Physiol Heart Circ Physiol. 2016 Dec 1;311(6):H1375-H1381. doi: 10.1152/ajpheart.00547.2016. Epub 2016 Sep 30.

Abstract

Systemic sclerosis (SSc) is a rare autoimmune disease characterized by debilitating fibrosis and vascular dysfunction; however, little is known about the circulatory response to exercise in this population. Therefore, we examined the peripheral hemodynamic and vasodilatory responses to handgrip exercise in 10 patients with SSc (61 ± 4 yr) and 15 age-matched healthy controls (56 ± 5 yr). Brachial artery diameter, blood flow, and mean arterial pressure (MAP) were determined at rest and during progressive static-intermittent handgrip exercise. Patients with SSc and controls were similar in body stature, handgrip strength, and MAP; however, brachial artery blood flow at rest was nearly twofold lower in patients with SSc compared with controls (22 ± 4 vs. 42 ± 5 ml/min, respectively; P < 0.05). Additionally, SSc patients had an ∼18% smaller brachial artery lumen diameter with an ∼28% thicker arterial wall at rest (P < 0.05). Although, during handgrip exercise, there were no differences in MAP between the groups, exercise-induced hyperemia and therefore vascular conductance were ∼35% lower at all exercise workloads in patients with SSc (P < 0.05). Brachial artery vasodilation, as assessed by the relationship between Δbrachial artery diameter and Δshear rate, was significantly attenuated in the patients with SSc (P < 0.05). Finally, vascular dysfunction in the patients with SSc was accompanied by elevated blood markers of oxidative stress and attenuated endogenous antioxidant activity (P < 0.05). Together, these findings reveal attenuated exercise-induced brachial artery blood flow and conduit arterial vasodilatory dysfunction during handgrip exercise in SSc and suggest that elevated oxidative stress may play a role.

Keywords: handgrip; oxidative stress.

Publication types

  • Research Support, N.I.H., Extramural
  • Research Support, U.S. Gov't, Non-P.H.S.

MeSH terms

  • Antioxidants / metabolism
  • Brachial Artery / physiopathology*
  • Case-Control Studies
  • Exercise*
  • Female
  • Hand Strength*
  • Humans
  • Hyperemia / physiopathology*
  • Male
  • Middle Aged
  • Oxidative Stress*
  • Regional Blood Flow
  • Scleroderma, Systemic / physiopathology*
  • Vasodilation / physiology*

Substances

  • Antioxidants