Single-Layer Halide Perovskite Light-Emitting Diodes with Sub-Band Gap Turn-On Voltage and High Brightness

J Phys Chem Lett. 2016 Oct 20;7(20):4059-4066. doi: 10.1021/acs.jpclett.6b01942. Epub 2016 Oct 3.

Abstract

Charge-carrier injection into an emissive semiconductor thin film can result in electroluminescence and is generally achieved by using a multilayer device structure, which requires an electron-injection layer (EIL) between the cathode and the emissive layer and a hole-injection layer (HIL) between the anode and the emissive layer. The recent advancement of halide perovskite semiconductors opens up a new path to electroluminescent devices with a greatly simplified device structure. We report cesium lead tribromide light-emitting diodes (LEDs) without the aid of an EIL or HIL. These so-called single-layer LEDs have exhibited a sub-band gap turn-on voltage. The devices obtained a brightness of 591 197 cd m-2 at 4.8 V, with an external quantum efficiency of 5.7% and a power efficiency of 14.1 lm W-1. Such an advancement demonstrates that very high efficiency of electron and hole injection can be obtained in perovskite LEDs even without using an EIL or HIL.