Background: Pulmonary rehabilitation (PR) improves oxidative capacity of peripheral muscles in patients with chronic obstructive pulmonary disease (COPD). The exercise-induced oxidative skeletal muscle adaptation in COPD patients with inherited alpha-1 antitrypsin deficiency (A1ATD) has not been studied.
Objectives: To compare PR effects on skeletal muscle adaptation in COPD patients with and without A1ATD.
Methods: Nine COPD patients with A1ATD (genotype PiZZ, 6 receiving A1AT augmentation therapy), and 10 'usual' COPD patients (genotype PiMM) performed an incremental cycling test and underwent musculus vastus lateralis biopsies before and after a 3-week PR program including exercise training.
Results: PiZZ and PiMM patients improved peak work rate following PR (+9 ± 11 W, p < 0.05, and +18 ± 9 W, p < 0.001, between-group difference p < 0.05). PiMM patients increased fibre type I (+8.1%), reduced fibre type IIA (-2.1%) and hybrid fibre type IIA/IIX proportion (-3.9%). Following PR, PiMM patients also raised mitochondrial signalling proteins PGC-1α (4.5-fold), and TFAM (6.4-fold). PiZZ patients had no change in fibre type I but showed a shift of type IIA/IIX (-8.8%) towards fibre type IIA distribution (+8.9%). The capillary to fibre ratio increased by 28% (p < 0.05) in PiZZ, whereas no change was observed in PiMM patients. Linear regression analysis revealed that diffusion capacity and A1AT therapy are predictor variables for myofibre type I response to PR (r2 = 0.684, p < 0.01).
Conclusions: Following a 3-week PR with comparable training modalities, PiMM but not PiZZ patients increased the oxidative myofibre type I proportion. This skeletal muscle adaptation pattern suggests better improvement of exercise capacity in PiMM than in PiZZ patients with COPD.
© 2016 S. Karger AG, Basel.