Combination therapy is a popular treatment for various diseases in the clinic. Among the successful cases, Traditional Chinese Medicinal (TCM) formulae can achieve synergistic effects in therapeutics and antagonistic effects in toxicity. However, characterizing the underlying molecular synergisms for the combination of drugs remains a challenging task due to high experimental expenses and complication of multicomponent herbal medicines. To understand the rationale of combination therapy, we investigated Sini Decoction, a well-known TCM consisting of three herbs, as a model. We applied our established diseases-specific chemogenomics databases and our systems pharmacology approach TargetHunter to explore synergistic mechanisms of Sini Decoction in the treatment of cardiovascular diseases. (1) We constructed a cardiovascular diseases-specific chemogenomics database, including drugs, target proteins, chemicals, and associated pathways. (2) Using our implemented chemoinformatics tools, we mapped out the interaction networks between active ingredients of Sini Decoction and their targets. (3) We also in silico predicted and experimentally confirmed that the side effects can be alleviated by the combination of the components. Overall, our results demonstrated that our cardiovascular disease-specific database was successfully applied for systems pharmacology analysis of a complicated herbal formula in predicting molecular synergetic mechanisms, and led to better understanding of a combinational therapy.