Inspired by biosystems, a process is proposed for preparing next-generation artificial polymer receptors with molecular recognition abilities capable of programmable site-directed modification following construction of nanocavities to provide multi-functionality. The proposed strategy involves strictly regulated multi-step chemical modifications: 1) fabrication of scaffolds by molecular imprinting for use as molecular recognition fields possessing reactive sites for further modifications at pre-determined positions, and 2) conjugation of appropriate functional groups with the reactive sites by post-imprinting modifications to develop programmed functionalizations designed prior to polymerization, allowing independent introduction of multiple functional groups. The proposed strategy holds promise as a reliable, affordable, and versatile approach, facilitating the emergence of polymer-based artificial antibodies bearing desirable functions that are beyond those of natural antibodies.
Keywords: imprinting; molecular recognition; polymers; proteins; sensors.
© 2016 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.