The long-range movement of organelles, vesicles, and macromolecular complexes by microtubule-based transport is crucial for cell growth and survival. The canonical view of intracellular transport is that each cargo directly recruits molecular motors via cargo-specific adaptor molecules. Recently, a new paradigm called 'hitchhiking' has emerged: some cargos can achieve motility by interacting with other cargos that have already recruited molecular motors. In this way, cargos are co-transported together and their movements are directly coupled. Cargo hitchhiking was discovered in fungi. However, the observation that organelle dynamics are coupled in mammalian cells suggests that this paradigm may be evolutionarily conserved. We review here the data for hitchhiking and discuss the biological significance of this non-canonical mode of microtubule-based transport.
Keywords: dynein; endosome; hitchhiking; kinesin; microtubule; peroxisome.
Copyright © 2016 Elsevier Ltd. All rights reserved.