Metabolism and binding of benzo[a]pyrene in randomly-proliferating, confluent and S-phase human skin fibroblasts

Cell Biol Toxicol. 1989 Jun;5(2):155-68. doi: 10.1007/BF00122650.

Abstract

The metabolism of benzo[a]pyrene in randomly proliferating and confluent cultures of human skin fibroblast cells was compared with cell cultures in early S phase of the cell cycle after a G1 block. When each cell population was exposed to [G-3H]benzo[a]pyrene for 24 hours and the organic soluble metabolites in the extracellular medium and intracellular components were analyzed by HPLC, a quantitative increase in metabolism was observed in the confluent cell populations. The amount of organic soluble metabolites in the extracellular medium of the confluent dense cultures was 2.7 times the amount found in randomly proliferating cultures and 1.5 times that of the synchronized cultures. The trans-7,8- and 9,10 dihydrodiols and 3-hydroxy benzo[a]pyrene were the major metabolites formed. Small amounts of the sulphate conjugate, 9-hydroxy-benzo[a]pyrene and the tetrols were also detected. Cytoplasmic as well as nuclear extracts from the confluent cell cultures also contained higher amounts of metabolites compared to those from the randomly proliferating and S-phase cells. The levels of DNA modification by metabolically activated benzo[a]pyrene did not differ among the randomly proliferating, confluent and S-phase cells. However, the S-phase cells exhibited approximately 50-fold increase in the frequency of transformation compared to the randomly proliferating cells. Confluent cells were not transformed by benzo[a]pyrene. These data suggest that factors other than random modification of DNA by the carcinogen might have a significant role in the expression of a transformed phenotype and that metabolism and transformation are not directly related. Furthermore, confluent dense cultures with a heightened capability for metabolism of benzo[a]pyrene were more active in the detoxification of benzo[a]pyrene than in the production of the metabolites associated with cellular transformation.

Publication types

  • Research Support, U.S. Gov't, Non-P.H.S.
  • Research Support, U.S. Gov't, P.H.S.

MeSH terms

  • Benzo(a)pyrene / metabolism*
  • Biological Transport
  • Cell Division
  • Cell Line, Transformed
  • Cell Nucleus / metabolism
  • Cells, Cultured
  • Chromatography, High Pressure Liquid
  • Cytosol / metabolism
  • DNA / metabolism
  • Fibroblasts / cytology
  • Fibroblasts / metabolism
  • Humans
  • Interphase*
  • Male
  • Skin / cytology

Substances

  • Benzo(a)pyrene
  • DNA