We aimed to investigate the effect of melatonin on bovine frozen-thawed semen and its impact on fertilization outcome. Plasma membrane integrity, mitochondrial activity, acrosome integrity, and levels of intracellular reactive oxygen species (ROS) were measured in spermatozoa treated with different concentrations of melatonin. Melatonin-treated spermatozoa were then used for in vitro fertilization, followed by analysis of subsequent embryo development and the expression of apoptosis- and antioxidant-related genes. The results revealed that 10-5 and 10-3 M melatonin led to higher plasma membrane integrity, mitochondrial activity, and acrosome integrity, and significantly decreased intracellular ROS levels (P < 0.05). The blastocyst development rate of in vitro-produced bovine embryos originating from 10-3 M melatonin-treated spermatozoa was significantly higher, while the incidence of apoptotic nuclei in blastocysts was markedly lower than for embryos from any other group (P < 0.05). CASP3 and BAX mRNA abundance were significantly reduced whereas BCL2, XIAP, and CAT transcript abundance were significantly increased in embryos produced from spermatozoa treated with 10-3 M melatonin; GPX4 expression, however, was comparable in all treatment groups. Thus, 10-3 M melatonin can improve the quality of bovine frozen-thawed semen. These beneficial effects appear to influence preimplantation embryos, given the correlation with its anti-apoptotic and anti-oxidative properties. Mol. Reprod. Dev. 83: 993-1002, 2016 © 2016 Wiley Periodicals, Inc.
© 2016 Wiley Periodicals, Inc.